Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Model ; 28(9): 270, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1999964

ABSTRACT

Natural products have been included in our dietary supplements and have been shown to have numerous therapeutic properties. With the looming danger of many zoonotic agents and novel emerging pathogens mainly of viral origin, many researchers are launching various clinical trials, testing these compounds for their antiviral activity. The present work deals with some of the available natural compounds from the literature that have demonstrated activity in counteracting pathogen infections. Accordingly, we screened, using in silico methods, this subset of natural compounds for searching potential drug candidates able to interfere in the recognition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and its target human angiotensin-converting enzyme 2 (hACE2) receptor, leading to the viral entry. Disrupting that recognition is crucial for slowing down the entrance of viral particles into host cells. The selected group of natural products was examined, and their interaction profiles against the host cell target protein ACE2 were studied at the atomic level. Based on different computer-based procedures including molecular docking, physicochemical property evaluation, and molecular dynamics, butein was identified as a potential hit molecule able to bind the hACE2 receptor. The results indicate that herbal compounds can be effective for providing possible therapeutics for treating and managing coronavirus disease 2019 (COVID-19) infection.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Chalcones , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL